A DYNAMIC APPROACH FOR EVALUATING INFRASTRUCTURE

PROJECTS' SUSTAINABLE PERFORMANCE

Hong Yao¹, Jian li Hao¹, Li yin Shen¹, Kinhang Lee² 1.Department of Building & Real Estate, the Hong Kong Polytechnic University 2.Royal Institute of Charted Surveyor, Hong Kong Chapter

Abstract: Construction activity is commonly considered to have adverse impacts on the environment, which is the basis of sustainable development for human being. Proper development and operation of a construction project can make significant contribution to the mission of sustainable development, especially for large-scale infrastructure projects where large amount investment and public interests are involved. Whilst the concept of sustainable construction has become popular in research, there is little existing work to provide appropriate methods to assess the degree of contribution of an infrastructure project to the attainment of sustainable development. This paper introduces a simulation model, using system dynamics methodology, to assess the sustainable performance of an infrastructure project across its life-cycle. The procedures of developing the model are explained in detail. A real life case is presented to evaluate the feasibility of an infrastructure project in terms of its sustainable performance.

Keywords: Evaluation; Infrastructure Projects; System Dynamics; Sustainable Performance

1_Introduction

Sustainable development stresses the long-term compatibility of the economic, social and environmental dimensions of human well being, while acknowledging their possible competition in the short-term. Two conclusions stem from this realization. First, development must balance different objectives and exploit their synergies, as progress in a specific area may be short-lived if not accompanied by simultaneous advances in others. Second, development must be undertaken with a long-term view of its implications, which ensure the costs of one generation's activities do not compromise the opportunities of future generations, as some key features of the environmental and social system cannot be easily restored once damaged (OECD,2001). This philosophy which lies at the heart of the concept of sustainable development requires the construction project to maximize the social and environmental benefits and minimize social and environmental costs, apart from economic considerations.

Construction industry and its relevant activities are widely considered as major contributors to environmental pollution and adverse effects on the mission of sustainable development. Traditionally, one of the most frequently used approaches is Cost Benefit Analysis (CBA). It generalized the classical criterion of financial gain by considering the market effects as well as the non-market effects of decisions, positive(benefit) and negative(cost) and bringing these to a monetary value (TANCZOS, 2001). Further methods for supporting decision-making in project evaluation include cost effectiveness analysis (CEA), multi-criterion analysis(MCA) (Abelson, 1996; Fuguitt, 1999; Harding, 1998). However, a major limitation in using these methods is that it does not consider the impacts of various dynamic factors on project performance through a project life cycle. In fact, a construction projects' development is a dynamic process. Shen et al (2005) presented a conceptual prototype model using system dynamics to evaluate the sustainable performance of construction project. It is considered that the effectiveness of project feasibility study can not be assured without considering the impacts of dynamic factors. This paper extends the dynamic model for assessing the sustainable performance of an infrastructure project

2 Dynamic factors affecting sustainable performance of infrastructure projects

Project evaluation is the process whereby a public agency or private enterprise determines whether a project meets the country's economic and social objectives and whether it meets these objectives efficiently (Adler, 1987).

Project performance traditionally refers to the outcomes of construction cost, construction time, and

ABC 13.10.06 21:18 Gelöscht:
ABC 20.10.06 11:08 Formatiert

construction quality; the identification of dynamic factors in the existing studies mainly concerns these three aspects. When the contents of project performance are extended to incorporating project sustainable performance, factors affecting project performance need to be reviewed. As it is to be measured by the contribution of the construction project concerned, to attain sustainable development, factors affecting project sustainable performance can be identified through examining the attributes to which a construction project contributes for attaining sustainable development. According to the general principle of sustainable development, there are three attributes to sustainable development; these are the sustainability of economic development(E), and the sustainability of social development (S), and the sustainability of environmental development(En) (WCED, 1987). These three contributors are used in this study to examine the sustainable performance of an infrastructure project.

During implementation of a construction project, the performance of the three aspects is affected by various factors at different stages across its life cycle. In a typical classification, the life cycle of a construction project is divided into five stages, which are inception stage, construction stage, commission stage, operation stage, and demolition stage (Shen et al, 2002). Some studies have examined the factors affecting these three aspects at different stages of a project (Hill and Bowen, 1997; Shen et al., 2002). By referring to such studies, a list of dynamic factors affecting sustainable performance of an infrastructure project across its life cycle can be identified. These factors are shown in Table 1.

Table 1 Major factors affecting sustainable performance of an infrastructure project

Economic Attributes	Social Attributes	Environmental Attributes
Net present Value	Economic net present value	Air pollution
Discount rate	Social discount rate	Noise pollution
Benefit stream	Social benefit stream	Water pollution
Cost stream	Social cost stream	Waste management
Payback period	Economic payback period	Ecology impacts
Internal rate of return	Economic internal rate of return	

3 A Dynamic Approach for Evaluating an Infrastructure Project's Sustainable Performance

Shen et al (2005) developed a model for assessing the sustainable performance of a construction project. By modifying and applying the model, the sustainable performance value (SPV) of an infrastructure project in its life cycle can be quantified through the below model:

$$\begin{cases} SPV = \int_{0}^{t} w_{E}(t) I_{E}(t) dt + \int_{0}^{t} w_{S}(t) I_{S}(t) dt + \int_{0}^{t} w_{En}(t) I_{En}(t) dt \\ W_{E}(t) + W_{S}(t) + W_{En}(t) = 1 \end{cases}$$
(1)

Where $I_E(t)$, $I_S(t)$ and $I_{En}(t)$ denote respectively the dynamic functions of generating economic impact, social impact and environmental impact from implementing an infrastructure project. Variables W_E , W_S and W_{En} denote respectively the weights of economic impact, social impact and environmental impact on SPV. The weights, at the same time, also reflect the trade-off between the economic impact, social impact and environmental impact.

All the variables I_E , I_S and I_{En} , W_E , W_S and W_{En} are changeable. To demonstrate the model SPV in a simple way, it is assumed that the weighting factors, W_E , W_S and W_{En} are constants. The model (1) can be revised as the flowing SPV model (2).

$$\begin{cases} SPV = \int_{0}^{t} I_{E}(t)dt + \int_{0}^{t} I_{S}(t)dt + \int_{0}^{t} I_{En}(t)dt & (2) \\ W_{E} + W_{S} + W_{En} = 1 \end{cases}$$

4_Development of the Simulation Model

The *ithink* software is used to develop the simulation model based on model (2). The simulation model is based on the principles of system dynamic methodology. The software enables users to visualize interrelationships, which constitute a process, a strategy, or an issue. The modeling and simulation capabilities of the software are ideally suited for capturing the operational dynamics and complexities of management issues depicting them as a flow chart or schematic (SDP, 2006). An overview of the model framework is illustrated in Figure 1.

Figure 1 Overview of the model framework

The model framework delineates three subsystem used for measuring the sustainable performance of an infrastructure project, depicting the high-level components. The relationships between these subsystems formulate the structure of the system. The structure operating over time generates its dynamic behavior patterns. The typical purpose of a system dynamics study is to understand how and why the dynamics of concern are generated and search for "policies" to improve the performance.

The simulation model for measuring the sustainable performance of an infrastructure project is constructed by the building blocks (variables) categorized as stocks, flow and converters, as shown in Figure 2. Stock variables symbolized by rectangles are the state variables and they represent the major accumulations in the system. Flow variables symbolized by valves are the rate of change in stock variables and they represent those activities, which fill in or drain the stocks. Converters represent by circles are intermediate variables used for miscellaneous calculations. Finally, the connectors represented by simple arrows are the information links representing the cause and effects within the model structure (HPS, 2005; Saysel and Barlas, 2001).

The CRIOCM 2006 International Symposium on "Advancement of Construction Management and Real Estate"

Table 2 Variables and formulations

Variables	Brief definition	Formulation

N.B. W.L. 4	Econo	mic performance value subsystem
NetPre Value1	Practical accumulated	NetPreValue1= $\int_{0}^{t} (Net \operatorname{Pr} eValue1(t - dt) + annualNPV1*dt);$
	financial net present value	J_0 Used for calculating the net present value
NetPre Value2	Accumulated financial net	NetPreValue1= $\int_{0}^{t} (Net \operatorname{Pr} eValue2(t - dt) + annualNPV2*dt);$
	present value	Used for calculating the IRR and the value is zero
annual NPV1	Yearly net present value	
annual NPV2	Yearly net present value	
disct factor1	Discount factor	
disct factor2	Discount factor	
optmlNPV	The optimal net present value	The expected value by the decision makers of a project
NPVbenchmk	The benchmark of the net present value	Generally, the value is zero
NPVuv	The utility value of the accumulated net present value across project's life cycle	NPVuv=(NEtPreValue1-NPVbenchmk)/(optmlNPV-NPVbenchmk)
W_{npv}, W_{pbkp1} and W_{irr}	Weights for the net present value, payback period, and internal rate of return respectively	
multiplier1	Multiplier	Be incorporate for the purpose of limiting the range of utility value from 0 to 100.
NPVpv	Performance value of accumulated net present value across project's life cycle	NPVpv=W _{npv} * Multiplier1 * NPVuv
bnftstrm	Financial benefit stream	Graphical function of time
cststrm	Financial cost stream	Graphical function of time
dsctrt	Discount rate	
pbkp	Practical payback period	
optmlpbkp	Optimal payback period	The expected value by the decision markers of a projects
pbkpbenchmk	Benchmark of payback period	The maximum payback period of capital investment
pbkpuv	Utility value of payback period	pbkpuv=(pbkpbenchmk-pbkp)/(pbkpbenchmk-optmlpkp)
pbkppv	Performance value evaluated of payback period	Pbkppv=pbkpuv*W _{pbkp1} *multiplier1
IRR	Practical internal rate of return when NetPreValue2 is zero	
IRRbenchmk	Benchmark of internal rate of return	Be determined according to the industry standard
optmlIRR	Optimal IRR	Expected value by the decision makers of a project
IRRuv	Utility value of IRR	IRRuv=(IRR-IRRbenchmk)/(optmlIRR-IRRbenchmk)
IRRpv	Performance value evaluated of IRR	IRRpv=W _{irr} *multiplier1*IRR
EcPV	Accumulated economic	Ecpv= NPVpv+ pbkppv+ IRRpv
	performance value of	
	project across project's life	
	Soci	al performance value subsystem
ENetPreValue1	Practical accumulated	ENetPreValue1 = O'(DV, D, V, L, 1(L, L))
	economic net present value	Used for calculating the economic net present value

ENetPreValue2	Accumulated economic net present value	ENetPreValue1= $\int_{0}^{t} (ENet \operatorname{Pr} eValue2(t - dt) + annualENPV2*dt);$ Used for calculating the IRR and the value is zero
annual ENPV1	Yearly economic net present value	
annual ENPV2	Yearly economic present value	
disct factor1	Social discount factor	
disct factor2	Social discount factor	
optmlENPV	Optimal economic net present value	The expected value by the decision makers of a project
ENPVbenchmk	Benchmark of economic net present value	This value is zero
ENPVuv	Utility value of the accumulated economic net present value across project's life cycle	ENPVuv=(ENetPreValue1-ENPVbenchmk)/(optmlENPV-ENPVbenchmk)
W _{enpv} , W _{epbkp} and Weirr	Weights for the economic net present value, economic payback period, and economic internal rate of return respectively	
Multiplier2	Multiplier	Be incorporate for the purpose of limiting the range of utility value from 0 to 100.
ENPVpv	Performance value of accumulated economic net present value across project's life cycle	ENPVpv= W _{enpv} * Multiplier1 * ENPVuv
sbnftstrm	Social benefit stream	Graphical function of time
scststrm	Social cost stream	Graphical function of time
srate	Social discount rate	
epbkp	Practical economic payback period	
eoptmlpbkp	Optimal economic payback period	Expected value by the decision markers of a project
epbkpbenchmk	Benchmark of the economic payback period	Maximum economic payback period of capital investment determined by project's decision maker
epbkpuv	Utility value of the economic payback period	epbkpuv=(epbkpbenchmk-epbkp)/(epbkpbenchmk-eoptmlpkp)
epbkppv	Performance value evaluated of economic payback period	epbkppv=epbkpuv*W _{epbkp} *multiplier2
EIRR	Practical economic internal rate of return when ENetPReValue2 is zero	
EIRRbenchmk	Benchmark of economic internal rate of return	Be determined according to the industry standard
eoptmlIRR	Optimal EIRR	Expected value by the decision makers of a project
EIRRuv	Utility value of the EIRR	EIRRuv=(EIRR-EIRRbenchmk)/(optmlEIRR-EIRRbenchmk)
EIRRpv	Performance value evaluated of IRR	EIRRpv=W _{irr} *multiplier2*EIRR
SoPV	Accumulated social performance value of project across project's life cycle	Sopv=EIRRpv+ epbkppv+ ENPVpv
Environmental performance value subsystem		
prete apl	Practical air pollutant emission in unit time	Graphic function of time

	across project's life cycle	
airbenchmk	Relevant criteria or	Graphic function of time
	standards stipulated by	
	authoritative bodies	
redct or	Percentage of projected	redct or incrs% I = (prctc apl-airbenchmk)/airbenchmk
incrs% 1,2,3,and	pollutant emissions/waste	redct or incrs% 2= (prctc npl-noisebenchmk)/noisebenchmk
4	lower or nigner than the	redct or incrs% 3= (prete api-waterbenchmk)/waterbenchmk
	benchmarks of expected	react or mers%4=(practical wst-expected ws)/expected wst
	project's life cycle	
W.W.W.W.and	Weights for air pollution	
W ₁ , W ₂ , W ₃ , W ₄ and	noise pollution water	
	pollution, waste	
	management and ecology	
	impacts, respectively	
multiplier3	Multiplier	Be incorporate for the purpose of limiting the range of performance value
		from 0 to 100.
air pltionPV	Performance value	air pltionpv=redct or incrs%1*W1*multiplier3
	evaluated of air pollution	
	in unit time across	
	project's life cycle	
prete npl	Practical noise pollutant	Graphic function of time
	emission in unit time	
noisebenehmk	Renchmark of poice	Palayant aritaria or standards stinulated by authoritative bodies
noisebenennik	pollution	Relevant enteria of standards supurated by autionative bodies
prete wpl	Practical water pollutant	Graphic function of time
piece wpi	emission in unit time	Graphic function of time
	across project's life cycle	
waterbenchmk	Benchmark of water	Relevant criteria or standards stipulated by authoritative bodies
	quality	1 ,
noise pltionpv	Performance value	noise pltionpv=redct or incrs%2*W2*multiplier3
	evaluated of noise	
	pollution in unit time	
	across project's life cycle	
water pltionPV	Performance value	water pltionpv=redct or incrs%3*W ₃ *multiplier3
	evaluated of water	
	pollution in unit time	
westeDV	Berformence value	waatany-radat ar in ara% 4*W *multipliar2
waster v	evaluated of waste	wastepv=redct or mers%4* w ₄ *multipliers
	management in unit time	
	across project's life cycle	
prete eclg	Practical ecological	Measured by the extent of affected species. The value is obtained through
1	impacts	judging subjectively based on the Eclgbenchmk
Eclgbenchmk	Ecological benchmarks	Adopt the Liker Scales: 1- seriously affect; 2-affect; 3- generally affect
_	_	4-slightly affect; 5-not affect
nfmV	Practical performance	nfmV-nrctceclg/Eclgbenchmk
pini t	value based on ecological	pini v – piete čelg. Elegoenennik
	benchmarks in unit time	
	across project's life cycle	
ecologyPV	Performance value	ecologyPV=multiplier3*W5*pfmv
	evaluated of ecology	
	impact in unit time across	
	project's life cycle	
unittime PV	Environmental	untime PV= ecologyPV+wastePV+ air pltionPV+noise pltionPV+water
	performance value	pltionPV +wastePV
	evaluated in unit time	
	across the project's life	

	cycle	
EnP	Accumulated performance value of environmental impact across project's life cycle	$EnP = \int_0^t EnP(t-dt) + (unittimePV) * dt$
	Sustain	able performance value subsystem
Wen, Wso and Wec	Weight for the environmental impact, social impact and economic impact, respectively	
W	Total weight	W=Wen+Wso+Wec=1
Ien	Accumulated environmental impact value across project's life cycle	Ien=Wen*EnPV
Iec	Accumulated economic impact value across project's life cycle	Iec=Wec*EcPV
Iso	Accumulated social impact value across project's life cycle	Iso=Wso*SoPV
SPV	Accumulated sustainable performance value across project's life cycle	SPV=Ien+Iec+Iso

5_Case study

In order to demonstrate how the simulation model is applied, a highway project is used, a highway is proposed to construct in the northern China, and the project is currently in question.) The initial year of construction is in 2007 and the estimated completion year in 2029. Construction period is 3 years and operation life is planned 20 years. Due to the short period of time of commission stage, it is ignored in this case study. The projected total investment of the project is 776.18 (in RMB million). The project is designed to promote economic and social development in northern China by providing the road infrastructure and improving access to poor villages. Specifically, the project comprises construction of a 28.10 kilometer, linking provincial capital, a major commercial center and county roads in designated poverty counties.

Figure 3 The input of variable 'bnftstrm'

The data used for this study are from the feasibility study of the highway project, which includes economic, social and environmental evaluation. Here, we take an example of the subsystem of economic performance value. The initial inputs for variables "bnftstrm" and "cststrm" are from the financial cash flow statement in the project's feasibility study. Figure 3 shows the example of the input for variable "bnftstrm".

Variable "IRR" can be obtained by letting variable "NetPreValue2" be zero. Variable "pbkp" can also be determined based on the calculated value of the variable "NetPreValue1". Variable "disctrt" is 3.978% according to the feasibility study. When the following values, "optmlpbkp", "pbkpbenchmk", "optmlIRR", "IRRbenchmk", "optmlNPV", "optmlNPV", " w_{npv} ", " w_{pbkp} " and " w_{irr} " are given by the project's decision makers based on their expected value, simulation can then be processed. Here, we assume:

 $\begin{array}{l} ptmlpbkp{=}0\\ pbkpbenchmk{=}20\\ optmlIRR{=}0.2\\ IRRbenchmk{=}0.03978\\ optmlNPV{=}10,0000\\ w_{pbkp}{=}w_{irr}{=}w_{irr}{=}1/3 \end{array}$

Figure 4 shows the result of economic performance value. Its value is 44.7, indicating practical economic impact of the project to the contribution of total SPV arrives at value of 44.7 when the satisfactory level for the economic impact is set to the value of 100.

Figure 4 Simulation in subsystem of economic performance value

Figure 5 Simulation in subsystem of economic performance value

In fact, the initial input values of variables are affected by many factors, and they can be revised as needed. For example, assuming the variable "dsctrt" change 0.0512, considering the inflation and the interest rate, the economic performance value will change to 35.9, lower than value of 44.7 when variable "dsctrt" is 0.03978, as shown in Figure 5. Similarly, other variables input can be regulated by considering some uncertainty factors. At the same time, the performance value will also change respectively. This implies some policies can be made by the decision makers to regulate the relevant variable value to the satisfactory level.

After all the variables in three subsystems are determined, simulation for calculating the SPV can then be processed and performed. Figure 6 shows the results of SPV.

Figure 6 Simulation results on SPV for the highway project

6_Conclusions

With the impetus to attain sustainable development of construction projects, this paper has introduced a simulation developed by using system dynamics approach. A real life infrastructure project presented its unique features and solutions based on the simulation outputs. It is limited to capture the behavior of construction projects at a holistic overview over time by using traditional evaluation approaches due mainly to its static nature. However, a construction project's impact on economic, social, and environmental aspects is dynamic. It can be seen that through the simulation process, the SPV model could be used for evaluating the dynamic impact of a construction project on the aspects. The simulation-based SPV model presented in this paper indicates that a project's contribution to sustainable development varies due largely to the impact of various dynamic variables throughout its life cycle. Such a dynamic approach may provide a variety of possible causative models and unveil hidden uncertainties which traditional methods fail to do. This clearly indicates that the sustainability attainment from implementing a construction project could be better achieved with the help of using the developed approach.

References

- Abelson, P.W. (1996). Project appraisal and valuation of the environment: general principles and six case studies in development countries, Macmillan, Basingstoke.
- ADB (Asian Development Bank) (1987). *Economic Analysis of Projects, available* at: <u>http://www.adb.org/documents/guidelines</u>.
- Adler, H. A. (1987). Economic appraisal of transport projects: a manual with case studies, The World Bank.
- Belli, P., Anderson, J. R., and Barnum, H. N. (2001). Economic Analysis of Investment Operations: analytical tools and practical applications, World Bank Institute, USA.

- Fuguitt, D. and Wilcox, S. J. (1999). Cost-benefit analysis for public sector decision makers, Quorum Books, London.
- Harding, R. (1998). Environmental decision-making: the roles of scientists, engineers and the public, Federation Press, Sydney.
- Hill, R. C. and Bowen, P. A., (1997). Sustainable construction: principles and a framework for attainment, Journal of construction management and economics, 15(3), 223-239.
- HPS (High Performance System, Inc.) (2005). An introduction to system thinking, High Performance System, Inc., 45 Lyme Road, Suite 200, Hanover NH 03755.
- OECD (Organization for Economic Co-operation and Development), (2001) Sustainable development Critical Issues, OECD, Paris.
- Saysel, A. K. and Barlas, Y. (2001) A dynamic model of Stalinization on irrigated lands, Ecological Modeling 139 pp. 177-199.
 SDP (2006). Key issues of sustainable performance for construction projects, The Hong Kong Polytechnic
- SDP (2006). Key issues of sustainable performance for construction projects, The Hong Kong Polytechnic University,
- Shen, L.Y., Wu, M., and Wang J. Y. (2002). A model for assessing the feasibility of construction project in contributing to the attainment of sustainable development, Journal of construction research, 3(2),255-269.
- Shen, L. Y., Wu, Y. Z., Chan, E. H. W., and Hao, J. L.(2005). Application of system dynamics for assessment of sustainable performance of construction projects, Journal of Zhejiang University, 2005 6A(4),339-349.
- Tanczos, K. and Kong, G. S. (2001). A review of appraisal methodologies of feasibility studies done by public private partnership in road project development.
- WCED (World Commission on Environment and Development) (1987). *Our common future*, Oxford University Press, UK, p1-23.