
1 INTRODUCTION  

In building practice, foils are used for waterproofing 
in the building phase, radiant barrier and vapour re-
tarder. In many cases, except the latter, the foil 
should be open for water vapour transport to prevent 
condensation. This can be accomplished by perfora-
tion. Standardized tests are performed to measure 
the water vapour permeability of such foils. In these 
tests (e.g. DIN 53122) the foil forms the separation 
between two air volumes at equal and constant tem-
perature but at different relative humidity. In prac-
tise, the foil is generally loosely attached to another 
material or rests e.g. on the roof boarding. The prac-
tical vapour permeability may therefore deviate from 
the measured value. 

In this paper a simple analytical model is pre-
sented for the water vapour permeability of a perfo-
rated foil is in dependence of perforation characteris-
tics and the water vapour permeability of the 
contacting materials, and compared with measure-
ment results. The influence of a small air layer be-
tween a less permeable material and the foil, air 
movement along and through the foil, water vapour 
permeation and capillary water transport in a con-
tacting material are discussed. 

2 ANALYTICAL MODEL 

2.1 Transport equations 
We limit the attention to isothermal diffusion of 
moisture in a material in the hygroscopic regime. 

The moisture transfer may then be described by 
Fick’s law: 

v vj pδ
µ

= ∇  (1) 

with vj  the water vapour flux density (kg m-2 s-1), 
δ the water vapour permeability of air (1,85·10-10 s 
at 20 °C), µ  the ratio of the water vapour resistance 
of the material and air (also known as the µ -value) 
and pv the partial water vapour pressure (Pa). Al-
though the μ-value may depend on the moisture con-
tent of a material, it is assumed to be constant. Using 
the equation of continuity, we find for stationary 
conditions: 

v
1 0p
µ

 
∇ ⋅ ∇ = 

 
. (2) 

At an interface between two materials we have: 

v,1 v,2n j n j⋅ = ⋅  (3) 

where n  is the normal vector and v,1j and v,2j  are 
the water vapour flux density in the adjacent materi-
als. 

2.2 Problem domain 
We limit the attention to a vapour-tight foil with per-
forations at regular positions. An example is shown 
in Figure 1 where the typical distance between the 
gaps is 2rd, which equals 1( )m −  with m the number 
of gaps per unit surface area. For other gap distribu-
tions, we define 1

d (2 )r m −≡ . The analytical model 
may not be applied if the distance between the gaps 
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varies too much. For instance, it not supposed to be 
valid in case the distance between the rows in Figure 
1 differs much from the distance between the col-
umns.  
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Figure 1: Example of a regular distribution of gaps in a foil. 
The distance between the gaps is 2rd and the radius of each gap 
is rg. 
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Figure 2: Schematic representation of the cylindrical problem 
domain. A vapour-tight foil with thickness df is situated be-
tween two media with thickness d1 (lower side) and d2 (upper 
side). The foil has a cylindrical gap with radius rg. The problem 
domain radially extents to rd, halve of the typical gap-to-gap 
distance of the perforated foil. 

 
 For the model development, consider a hypo-

thetical cylinder with radius rd and its axis of sym-
metry perpendicular to the foil surface and through 
the midpoint of one of the gaps. We impose a cylin-
drical (r, z, ϕ) coordinate system, as shown in Figure 
2 for relevant areas in the (r, z)-plane. The angle ϕ 

may be ignored due to rotation symmetry. The 
boundaries in the z-direction correspond to the 
thickness of the (homogeneous) medium at a side of 
the foil, denoted as d1 and d2 for the lower and upper 
side, respectively. The thickness of the foil is df. 

2.3 Boundary conditions 
The problem domain is simplified by disregard-

ing transport in the region between the dotted square 
and enclosed circle in Figure 1. As a result, the hy-
pothetical boundary at r = rd in Figure 2 is supposed 
to be impermeable, i.e. / 0p r∂ ∂ =  at r = rd.  The in-
duced error by disregarding this region is small and 
will be discussed later. Furthermore, the partial wa-
ter vapour pressure at the lower (z = 0) and upper 
domain boundary (z = d1 + df + d2) is supposed to be 
constant at pv,1 and pv,2, respectively. 

2.4 Model description 
In analogy with an electrical circuit with a series 

of ohmic resistors, the water vapour transport may 
be described by a series of regions each having a 
specific resistance. This resistance equals the ratio of 
the water-vapour pressure difference over the region 
and the corresponding vapour flux density and de-
pends on the geometry and µ -value. Seven (homo-
geneous) regions are distinguished in Figure 2: three 
regions at each side of the foil and the gap itself. Be-
cause of symmetry, the lower side is only considered 
here. 

At a larger distance (>rd) from the gap, the trans-
port in this first region is not much influenced by the 
foil. The vapour transfer is assumed to be one-
dimensional (along z-axis) and may therefore be dis-
regarded for evaluating the vapour resistance of the 
foil. The second region is considered to exist be-
tween two spheres with radius rg and r1,s from the 
point (0, d1) situated just below the centre of a gap. 
We define r1,s ≡ rd when d1 ≥ rd, and r1,s ≡ d1 when d1 
< rd. Assuming transport with spherical symmetry, 
the transport resistance is given by 

1
1,s
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R
r

µ
πδ

 
= −   

, (4) 

where μ1 is the μ-value of medium 1. The third re-
gion lies between the spherical surface with radius rg 
and the cylindrical surface of the gap opening (0 < r 
< rg, z = d1), where the transport develops from 
spherical to cylindrical symmetry. A simple analyti-
cal expression for the resistance can therefore not be 
given. Following the approach by Heiss (1954) and  
Lange et al. (2000), the resistance of this transition 
area is estimated at: 

1
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The two influencing regions at the upper side of the 
foil are modelled in a similar way. Finally, the resis-
tance of the cylindrical gap itself is described by 

g f
g 2

g

d
R

r
µ
πδ

= , (6) 

where μg is the μ-value of the gap and df the thick-
ness of the foil. 

 The total transport resistance Rtot of the region 
influenced by the foil is given by summation of five 
resistances. After some rearranging, we find  

g f
t 1 2 2
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1 5 1 5 1
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d
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r r r r
µ
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= − + − +            

.(7) 

Effective μd-value of a perforated foil 
For a simple one-dimensional or numerical calcu-

lation of water vapour transfer in a construction, it is 
practical to know the effective vapour resistance 
(μperdf) of a perforated foil. In principle, for one-
dimensional transport we may write for the effective 
total resistance: 
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Equating with Equation (7) yields: 
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Usually the gap-to-gap distance will be much larger 
than the gap radius, or rd >> rg. If furthermore d1 ≥ rd 
and d2 ≥ rd (i.e. r1,s = r2,s = rd) a good approximation 
is: 

2
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. (10) 

where the third term at the right-hand side may be 
neglected for thin foils in proportion to the gap ra-
dius (and μg = 1).  The effective resistance of a thin 
foil is therefore 1) proportional to the sum of the μ-
values of the media at both sides of the foil, 2) quad-
ratically proportional to the gap-to-gap distance and 
3) reversely proportional to the radius of the gaps. 
The first demonstrates that the apparent vapour 
resistance of a perforated foil can not be regarded in-
dependent of the vapour resistance of the contacting 
media. However, in many cases the third term at the 
right-hand side of Equation (10) should not be ig-
nored. 

3 COMPARISON WITH NUMERICAL 
CALCULATIONS 

To gain some insight in the validity of the above 
idealised and simplified analytical model a compari-
son has been made with numerical calculations of 
diffusion through a pinhole for the geometry as 
shown in Figure 2. The comparison focuses on the 
effective resistance of the perforated foil and has 
been performed for several variants, involving the 
parameters μ1, μ2, d1, d2, rg and rd. The considered 
values are given in Table 1. The thickness of the foil 
is constant, df = 0.3 mm, and the gap is air-filled  
(μg = 1). Due to symmetry only 126 of the 216 vari-
ants are principally different. The ratio of the nu-
merically1 and analytically calculated effective resis-
tance μperdf of these 126 variants as calculated with 
Equation (9) is shown in Figure 3, sorted by this ra-
tio. It is seen that for a small group the numerical 
values are significantly larger than estimated with 
Equation (9). It appears that this group involves all 
cases for which both rg = 1 mm and rd = 2 mm. If we 
disregard this group, see inset in Figure 3, the differ-
ences between the analytical and numerical value are 
within 9 %. 

 
Table 1. Values for μ1, μ2, d1, d2, rg and rd used in the calcula-
tions. 

parameter value #1 value #2 value #3 unit 
μ1 1 30   
μ2 1 30   
d1 2   8 32 mm 
d2 2   8 32 mm 
rg 0.25   1  mm 
rd 2   8 32 mm 
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Figure 3. Ratio of numerically and analytically calculated ef-
fective diffusion resistance of perforated foil for the parameters 
shown in Table 1. Inset: enlargement of vertical axis for cases 
with rg = 1 mm and rd = 2 mm left out. 

                                                 
1 Refinement of the numerical grid did not influence the results. 



These results show that the analytical model 
agrees well with the numerical model, except when 
the gap diameter is not much smaller than the gap-
to-gap distance. In that case, more or less linear 
transport occurs instead of spherical transport as as-
sumed in the analytical model. These cases are char-
acterised by a large degree of perforation n, defined 
as the ratio of gap area to total area: 

2
g

2
d(2 )
r

n
r

π
= , (11) 

for a distribution as shown in Figure 1. For rg = 1 
mm and  rd = 2 mm the degree of perforation is 20 
%. As the next largest degree of perforation in the 
previous set of calculations is 1.2 %, some addi-
tional calculations were performed with 0.012 < n < 
0.2. These results, together with the previous data, 
are shown in Figure 4 as a function of n. There is a 
clear correlation between the calculated ratio and the 
degree of perforation and it is seen that the differ-
ences are smaller than 15 % for n < 5 %. We may 
therefore conclude that Equation (9) is a good 
description for the effective μd-value of a perforated 
foil for a degree of perforation < 5%. 
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Figure 4: Ratio of numerically and analytically calculated ef-
fective diffusion resistance of a perforated foil as a function of 
the degree of perforation. Next to the variants shown in Figure 
3, additional results are shown for which 0.012 < n < 0.2.  

4 COMPARISON WITH EXPERIMENTAL 
RESULTS 

4.1 Measurements by Schüle & Reichardt  
In this section we compare the analytical model 

with experimental results obtained by Schüle & 
Reichardt (1980) who measured the vapour flux 
through perforated metal plates for varying degree of 
perforation and gap diameter. Their 'first' set-up con-
sisted of cups with silica gel, covered with either cir-
cular (190 mm diameter) or rectangular (110 x 230 

230 mm2) 1 mm thick metal plates with 1, 5 or 9 
gaps regularly distributed over the plate, with gap 
diameters of 1, 5, 10 or 20 mm, placed in a room at 
23 °C and 50 % RH at practically still air (air veloc-
ity < 0.05 m s-1). The vapour flux was derived from 
the rate of mass increase of the silica gel. The degree 
of perforation for reported data varies between 0.014 
% and 10 %. In Figure 5 the modelled2 (left axis) 
and experimental water vapour flux3 normalised to 1 
Pa partial vapour pressure difference (| pv,1-pv,2| = 1 
Pa) is plotted against each other (solid circles). For 
clarity, the relative difference (%, right axis) be-
tween these quantities is shown by open squares. 
The mean relative difference is -4 % with a maxi-
mum of 16 %. Although there is some tendency for a 
positive difference (model larger than experiment) 
for a smaller vapour flux density and vice versa, it 
may be concluded that the model, considering its ac-
curacy of about 15 %, compares well with these ex-
perimental results. 
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Figure 5. Left axis: analytically calculated water vapour flux 
plotted against the measured flux (solid circles). Right axis: 
relative difference (%) between the two values (open squares). 

 
 A second series of experiments focussed on the 

influence of the thickness of the metal plates df , i.e. 
on the gap depth. These measurements were done 
for 1, 2, 5 and 7 mm thick plates containing 1 gap 
with a diameter of 5 mm. The comparison with the 
modelled vapour flux is shown in Figure 6. Here a 
systematic difference between model and experi-
ment is observed. The model starts to overestimate 
the measured values for larger plate thickness. For a 
7 mm plate, the modelled value is a factor 1.5 higher 
than measured. This observation is quite opposite to 
expectations. As the vapour transport in the gap is 
linear one-dimensional and the diffusion resistance 
                                                 
2 With d1 = d2 = 40 mm and µ1 = µ2 = 1. 
3 Experimental uncertainty not reported. 



of the gap (last term at the right-hand side of Equa-
tion (9)) starts to dominate for gap depths > 5 mm, 
the diffusion resistance is more well-defined from 
the modelling point of view. The cause of the differ-
ence is therefore not clear and probably not due to 
shortcomings of the model. 
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Figure 6. Analytically calculated water vapour flux plotted 
against the measured flux (solid circles) through a 5 mm di-
ameter gap for different gap depth df, indicated in the graph.  

 
A third series of experiments by Schüle and 

Reichardt concerned the effect of two isolating ma-
terials. Measurements were performed with 30 mm 
mineral wool (MW, µ = 2,6) and 20 mm expanded 
polystyrene (PS, µ = 37) attached to one side of a 1 
mm thick perforated plate containing 5 gaps with 1, 
5 and 10 mm gap diameter. In Figure 7 the modelled 
flux is plotted against the measured values for MW 
(solid circles) and PS (open circles). The differences 
between measurement and model are considerable 
for mineral wool (<50 %) and large for polystyrene 
where differences of about a factor 4 to 5 are ob-
served for all data points, the modelled values being 
lower than measured. This may partly be explained 
by a RH-dependent µ -value of the isolating mate-
rial. A large part of the vapour resistance is deter-
mined by transport in the isolating material close to 
a gap where dry conditions (RH < 20 %) prevail, 
which may deviate from the humidity conditions at 
which the vapour resistance of the material is deter-
mined. The vapour resistance is known to decrease 
with decreasing relative humidity for some materi-
als. Whether this holds for PS has not been verified. 
Another explanation might be the presence of a thin 
air-layer between the metal plate and isolating mate-
rial. Numerical calculations indicate that a 0.3 mm 
air layer (and no leakage at the side of the cup) rises 
the vapour flux by a factor 3 to 5. Unfortunately,  
these suppositions can not be verified.  
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Figure 7. Analytically calculated water vapour flux plotted 
against the measured flux for a configuration with 30 mm min-
eral wool (solid circles) and 20 mm expanded polystyrene 
(open circles)  attached to a perforated metal plate with 5 gaps 
for different gap diameter rg, indicated in the graph. 

4.2 Perforated foils 
The dimensional parameters rg, rd and df of three 
commercially available perforated foils have been 
measured and used in the analytical model to calcu-
late the water vapour permeability (at ∆pv = 2400 
Pa). This predicted value is compared with the 
measured value cited by the representative. The 
characteristics of the polyethylene foils and the pre-
dicted and measured water vapour permeability are 
given in Table 2. The prediction significantly under-
estimates the measured value for foil #1 whereas 
there is a reasonable correspondence for foil #2 and 
a slight overestimation for foil #3. The uncertainty in 
the predicted value for foil #2 is however large due 
to a strong deformation of the polyethylene near the 
perforations which results in tortuous gaps that are 
much longer than the foil itself. This impedes an ac-
curate measurement. To a lesser extent this also ac-
counts for foil #3, which may explain the overesti-
mation. The underestimation for foil #1 may be 
caused by vapour transport through the foil material.  

 
Table 2. Measured foil parameters and predicted water vapour 
permeability of three commercial perforated foils. Uncertainty 
in predicted value reflects uncertainty in gap radius and length. 

Foil rg 
µm 

rd 
mm 

df 
µm 

measured 
permeab. 
(g m-2 24h-1) 

predicted 
permeab. 
(g m-2 24h-1) 

Foil #1  27 5.3*  95  25  7 ±   2 
Foil #2 175§ 4.3# 500§  100  80 ± 25 
Foil #3  67 1.96$ 150  140  170 ± 15 

* 9000 gaps m-2, # 13800 gaps m-2, $ 83000 gaps m-2 
§ rough estimates, foil thickness is 100 μm 



5 DISCUSSION 

 
To what extent the simplifications in the analyti-

cal (and numerical) model are permissible for appli-
cation under practical conditions, is discussed. 

Idealisation of the problem domain 
Both the analytical and the numerical model as-

sume an impermeable boundary at the cylindrical 
wall r = rd. This procedure disregards transport in 
the region between the (dotted) square and the inner 
circle. The induced error is however small for a per-
foration degree < 5 %. Instead of rd as typical radius, 
we could have chosen ,

dr  corresponding to a circle 
with surface area equal to the dotted square, i.e. 

,
dr  ≈ 1.13 rd. For a perforation degree n = 5 % the ef-

fect on the total diffusion resistance is only 2 %. 
 The analytical model also disregards the trans-

port resistance of the area between the surface z = d1 
– r1,s and the halve sphere with radius r1,s, see Figure 
2  (mutatis mutandis for the other side of the foil). In 
this area the diffusive transport switches over from 
linear to spherical symmetry. Since this transition 
area is correctly described by the numerical model, 
there is no effect on the data shown in Figure 3. It 
may however explain a calculated ratio < 1 for a 
large part of the data in this figure. 

 

Vapour permeability of the foil material 
In practice, synthetic foils are to some extent 

permeable to water vapour whereas Equation (9) is 
only applicable if the vapour flux through the foil 
material is much smaller than the flux through the 
gap. For a first-order estimate of the ratio of these 
fluxes we assume two independent parallel transport 
paths through the foil material and the gap. If we 
impose the Dirichlet boundary conditions at the foil 
surface, the total effective μ-value of a perforated 
foil is  approximated by 

1

eff
per f

1 1µ
µ µ

−
 

= +   
, (12) 

where μf is the μ-value of the foil material. This is a 
lower-bound estimate of the effective resistance, i.e. 
the true flux through the foil material will be some-
what lower.  

Air flow through the foil 
The model has been derived for stagnant air. But, 

air will flow through the gaps in response to air-
pressure differences over the foil. Typical air pres-
sure difference found in practise due to wind and 
thermal buoyancy are of the order of 1 – 10 Pa. To 
estimate the effect of an air flow through a perfo-
rated foil, we consider the Peclet number of the 
flow, characterising whether the water vapour trans-

port is diffusion dominated (Pe < 1) or advection 
dominated (Pe > 1), defined as 

 char char

0

Pe v d
D

µ=  (13) 

where vchar and dchar are a characteristic velocity and 
distance of the flow and D0 the diffusion coefficient 
of water vapour in air (approx. 2.5⋅10-5 m2 s-1). As 
yet, the foil is thought to be situated between air lay-
ers, i.e. μ = 1; 

 Consider again Figure 2. As a result of an air-
pressure difference ap∆ between the surfaces (z = 0) 
and (z = d1 + df + d2), a flow rate Q is induced 
through the gap. The air flow through the foil can ei-
ther be 'creeping' (viscous) or turbulent. In case of 
creeping flow, we have to a very good approxima-
tion (Dagan et al., 1982; Sisavath et al., 2002): 
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+   

, (14) 

where μv the viscosity of air (1.8⋅10-5 Pa s). Viscous 
forces dominate for Reynolds number <1, defined as 

char char

v

vRe= dρ
µ

, (15) 

where ρ is the air density (≈1.2 kg m-3). Combining 
with Equation (13) gives 

-10

v

Re = Pe = Sc PeDρ
µ

, (16) 

where Sc is the Schmidt number (0.6 for air at 20 
°C) which shows that diffusion will dominate the 
transport of water vapour for creeping flow condi-
tions. It is however not so easy to specify the charac-
teristic velocity and distance for the problem at 
hand. At first instance, we might take the velocity in 
the gap and gap radius. But, since the transport proc-
ess is largely governed by the converging and di-
verging flow field at some distance from the gap, we 
take, as a trade-off, the flow velocity at the spherical 
surface with 'characteristic' radius 2rg from a gap. 
The average flow velocity at this sphere is 

char 2
g2 (2 )

Qv
rπ

= , (17) 

and therefore, using Equation (14): 
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For example, viscous dissipation and therefore va-
pour diffusion will dominate at 10 Pa pressure dif-
ference for gap radii smaller than 60 μm for a foil of 
thickness df = 100 μm. For these parameters and e.g. 



a degree of perforation of 0.01 %, the flow rate 
through a unit area of perforated foil is 0.2 L s-1, a 
reasonable value from a practical point of view. For 
larger gap radii convection may dominate depending 
on the pressure difference over the foil. 

For turbulent flow we may use the well-known 
orifice equation as an approximation (rd >> rg) to 
calculate the flow rate: 

2
d g

2 pQ C rπ
ρ
∆= . (19) 

where Cd is the discharge coefficient which is ap-
proximately 0.6 for high Reynolds number (Bird et 
al., 1960). As the vapour transport is dominated by 
convection in this flow regime, the vapour flux Jv 
(kg s-1) through the gap may then be approximated 
by: 

v
v

w

pJ Q
R T

=  (20) 

where pv is the partial water vapour pressure at the 
high air-pressure side of the foil, Rw the gas constant 
of water (462 J kg-1 K-1) en T the temperature.  

The above equations do not hold for foils at-
tached (at one side) to an air-permeable material. If 
we assume that Darcy's law holds for air-flow in 
such a medium: 

a a
v

Kq p
µ

= ∇  (21) 

where aq  is the air flux density (m3 m-2 s-1) and K 
(m2) the permeability of the medium, there is a 
mathematical correspondence with Equation (1). If 
we further assume that the resistance to air flow is 
completely determined by the material, we have for 
the air-flow rate through the gap, following Equation 
(10) for rd >> rg (and d1 ≥ rd; d2 ≥ rd): 

g a
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Kr p
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µ
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=  (22) 

so, using Equations (13) and (17), the Peclet number 
is 
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3Pe
10
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D
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πµ

∆= , (23) 

For an extremely open medium (e.g. coarse sand) K 
= 5⋅10-11 m2 and μ ≈ 2, we find Pe = 0.2 at 10 Pa 
pressure difference. As for other denser materials, 
the product μK usually decreases, it is concluded that 
diffusion will nearly always dominate the vapour 
transport mechanism for foils attached to a solid 
material. 

Air flow along the foil 
For air flow along the foil we use the lateral ve-

locity ux at a distance 2rg from the foil as the charac-

teristic velocity. This velocity however strongly de-
pends on the circumstances. For a foil exposed to the 
climate, wind gusts may locally impose large veloci-
ties in absence of a developed boundary layer. On 
the other hand, in practise perforated foils are usu-
ally installed in a cavity and are thus sheltered from 
the wind. To obtain some quantitative idea, consider 
one-dimensional laminar flow in a d m wide cavity 
for which the lateral flow velocity ux is described by 

2

x max
14 ; ,
2

y yu u y d
d d

  = − ≤     
 (24) 

where y is the perpendicular distance from one of the 
sides and umax is the maximum velocity, at y = d/2. 
At a distance y = 2rg and rg << d, the Peclet number 
is 

2
max

0

16
Pe = gu r

dD
. (25) 

For d = 0.02 m and umax = 0.1 m s-1, we find Pe = 1 
for rg = 0,56 mm. This indicates that diffusion will 
dominate in most circumstances because the gap ra-
dius is usually smaller and higher velocities are not 
expected to occur frequently. Exceptions may con-
cern cavities that are well ventilated with outdoor 
air. Note that air flow along an attached foil will 
normally have no influence on the vapour flux as the 
largest diffusion resistance lies in the solid material.  

Connection with the substrate 
In practise perforated foils are often loosely at-

tached (stapled) to a substrate material, which results 
in a small air layer (plenum) between the foil and the 
material. Such an air layer has a strong effect on the 
effective vapour resistance of the foil. Numerical 
calculations indicate that for a 1 mm air layer be-
tween a foil and a material with μ = 30, the vapour 
resistance is decreased by about an order of magni-
tude. Evidently, the analytical model can not be used 
for such configurations. As moreover in practise the 
air-layer thickness will vary over the foil, the de-
scription of the vapour transfer becomes very diffi-
cult and three-dimensional (a problem that does not 
arise for non-perforated foils). An accurate descrip-
tion of the vapour transfer through a perforated foil 
can therefore only be given for a perfect connection 
to a substrate or if the air layer thickness is a least 
about the size of the gap-to-gap distance.  

Water transport in the substrate 
The model assumes that the moisture transport in 

the substrate is dominated by vapour transfer, i.e. 
that the moisture content, for a porous material, is 
below the critical value. If the moisture content is 
above that value, the moisture transfer is dominated 
by capillary water transport which is normally much 
faster than vapour transfer. In that case, an effective 



vapour resistance of the foil may be derived based 
on the assumption that the moisture transport in the 
substrate does not contribute to the total transport re-
sistance. It is then allowed to use Equation (9) with 
the μ-value of the substrate set to zero. 

 It should however be remarked that this simple 
view may not reflect reality. As the material may dry 
quickly near a gap (the vapour flux density is locally 
higher than for an uncovered surface), it is conceiv-
able that the capillary transport is not fast enough to 
keep up with the transfer rate. As a result, a new 
equilibrium may set in where the moisture content 
becomes sub critical near the gap. To what extent 
this happens depends on the moisture transport char-
acteristics of the porous material. In any case, capil-
lary water transport will lower the effective resis-
tance of the foil. 
 

6 CONCLUSIONS 

A simple analytical model has been developed that 
predicts the water vapour permeability of a perfo-
rated foil in dependence of the gap radius, gap-to-
gap distance, foil thickness and the vapour resistance 
of  the substrate material (if present).  According to 
this model, the effective resistance of a thin perfo-
rated foil is, under most circumstances, linearly pro-
portional to the μ-value of the substrate material(s),  
quadratically proportional with the gap-to-gap dis-
tance and reversely proportional to the radius of the 
gaps. A comparison with more precise numerical 
calculations of diffusive water vapour transport 
shows that the model predicts the permeability 
within 15 % if less than 5 % of the foil surface is 
perforated. 

A similar agreement is observed in comparison 
with measurement results obtained by others for wa-
ter vapour transport through thin perforated metal 
plates. Somewhat larger deviations are observed for 
measurements with thicker perforated plates but this 
is probably not due to weaknesses of the model. 
Very large differences of about a factor 5 are how-
ever seen for perforated plates attached to a material 
with a μ-value of 37. It is speculated that this might 
be caused by a thin air-layer between the plate and 
the material. Furthermore, the model reasonably 
predicts the water vapour permeability of one com-
mercially available perforated polyethylene foil but 
underestimates the permeability for another by a fac-
tor 3. This comparison should actually include more 
foils to obtain a better insight. 

There are circumstances in practise that violate 
the model assumption of pure diffusive transport. A 
key factor in this context concerns the air-flow ve-
locity through and along the foil. Although diffusive 
transport will dominate in most cases, there are some 
configurations for which convective transport will 

have an influence depending on the climate condi-
tions. Air flow along a perforated foil will always 
enhance the vapour transport through the foil, 
whereas air flow through the foil may also decrease 
the vapour flow depending on the flow direction. 

Another outcome of the model is the strong influ-
ence of the vapour resistance of the substrate on the 
effective vapour permeability of the foil. As the wa-
ter vapour resistance of a perforated foil is usually 
measured with air at both sides of the foil, it is not 
allowed to use this value for calculating the vapour 
resistance of e.g. a wall or roof assembly if the foil a 
tightly attached to a substrate. 
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